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The steady, inviscid, axisymmetric, rotating flow past a prolate spheroid in an 
unbounded liquid is determined on the hypothesis that all streamlines originate 
in a uniform flow far upstream of the body. The similarity parameters for the 
flow are K = 2Qa/U and 6 = a/b, where 2a and 2b are the minor and major axes 
and 51 and U are the angular and axial velocities of the basic flow. Solutions are 
obtained both by separation of variables in prolate spheroidal co-ordinates and 
through the slender-body limit 6 $ 0  with K = O( 1). Forward separation is found 
to occur for K > K * ,  where K* lies between 2.2 and 2.3 for 0 < 6 < 1. The velocity 
on the body, the upstream axial velocity and the wave drag are calculated for 
K < K * .  

1. Introduction 
We consider (see figure 1) a prolate spheroid in an externally unbounded, 

inviscid, axisymmetric, rotating flow that is (by Long’s hypothesis) uniform far 
upstream of the body. The eccentricity of the meridional ellipse and the slender- 
ness ratio, either of which may be chosen as the geometrical similarity parameter, 
are given by 

e = b/l, 6 = a/b = (e2- l)a/,?, I = (b2-a2)%, (l . la,  b,  c) 

where 2a and 2b are the minor and major axes and 22 is the interfocal length. 
The kinematical similarity parameter may be chosen as either of the inverse 
Rossby numbers 

(1 .2~4 b )  

where Q and U are the rotational and translational velocities of the basic flow. 
We seek the tangential velocity on the body, the upstream axial velocity and the 
wave drag as functions of K and 6. 

Both theory and experiment imply a reversed flow in the neighbourhood of 
the upstream stagnation point for axisymmetric rotating flow past a bluff body 
of revolution for sufficiently large K ,  say K > K * .  The theoretical values of K* 

for a sphere (6 = 1) and a disk (8 = m) are 2.2 and 1-9 respectively (Miles 1971, 
1972). The former value is significantly larger than the value (K* 5 1) implied 
by Maxworthy’s (1970) observations for a sphere that is free to rotate and 
somewhat smaller than the value (K* = 2.6) reported by Orloff & Bossel (1971) 
for a sphere that is constrained against rotation (the theoretical model implies 

k = 2na/u, K = 2Slap = k ( 2 -  l)*, 
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that particles in the stream surface of the body have no azimuthal rotation by 
virtue of their origin on the upstream axis and of conservation of angular momen- 
tum along streamlines). The theoretical value for the disk is in agreement with 
the observed value for a disk that is constrained against rotation (Orlo@ & Bossel 
1971). 

This agreement with observation notwithstanding, the theoretical model is 
deficient in that it fails to account for the downstream separation that necessarily 
occurs in a real fluid. There are good reasons (see Miles 1971, 1972) to believe 
that this deficiency is of only secondary importance for the prediction of up- 
stream ff ow, but i t  nevertheIess appears desirable to carry out the corresponding 
calculations for a slender body (for which downstream separation is confined 
to a small neighbourhood of the downstream stagnation point) and to establish 
the dependence of upstream separation on the two parameters 6 and K for 6 < 1. 

Theoretical results are available (Miles 1969) in the slender-body limit 6 J. 0 
with K = O(l ) . t  They appear to be adequate for the calculation of the flow far 
upstream of a slender ellipsoid but are not directly applicable to the calculation 
of stagnation-point flow. We therefore proceed to obtain a separation-of- 
variables solution of the boundary-value problem for any prolate spheroid 
(0 < 6 6 I) and then compare the results with those provided by a suitably 
modified slender-body approximation. We find that the principal results, 
appropriately normalized, depend primarily on K ,  and are relatively insensitive 
to 6 with K fixed, for 0 < 6 < 1; in particular K* = 2.3 for 6 = 0 and lies between 
2-3 and 2-2 for S < 1. The wave drag, on the other hand, exhibits a more com- 
plicated dependence on Ic and 6. 

The reader is referred to the papers cited above (especially Miles 1972) for 
further background and for discussion of the limitations imposed by Long’s 
hypothesis$ and by the appearance of closed streamlines in the downstream 
(lee-wave) flow for K > K,. The available results suggest that K, < K* (e.g. 
K, = 1.94 and K* = 2-30 for 64 0 and K, = K* = 2.2 for 6 = l), but are consistent 
with the hypothesis that such changes as may be induced by the closed stream- 
lines do not significantly affect the upstream flow for K < K* .  

Frequent references will be made to Flammer’s ( 1957) monograph on spheroidal 
wave functions and to Miles (1969), and equations and sections from these 
sources will be prefixed by F and I, respectively. The analysis closely resembles 
that for the oblate-spheroid solution (Miles 1972) and therefore is abbreviated. 
It should be noted, however, that the coefficients in the oblate-spheroidal-wave- 
function expansion for the circular disk are determined directly by virtue of 
orthogonality, whereas the determination of the corresponding coefficients for 
the prolate spheroid (or for an oblate spheroid of finite thickness) requires the 
truncation and inversion of an infinite set of linear equations. 

t The slender-body Iimit 6 $ 0 with k = O(1) is much simpler (see MiIes 1969) but is 
vacuous in the present context. 

2 It should perhaps be emphasized that McIntyre (1972) has demonstrated the validity 
of Long’s hypothesis for unseparated flow with moderate IC and a Q a,,, where a, is the 
radius of the cylinder that actually confines the flow (radially unbounded flow is equivalent 
to ala, 4 0). 
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2. Boundary-value problem 

the velocity from a vector potential according to 
After referring all lengths and velocities to 1 and U ,  respectively, we derive 

v=Vx++k+,  +=A+, (2.1) 

where cP1 is a unit vector in the azimuthal direction of rotation, $ satisfies 
(Batchelor 1970, $7.5 with @ = UZ2r$) 

9, + (brr + + (k2 - r-2) + = $k2r, (2.2) 

Q = 0 on S ,  Q N $r+o( l /kR)  (kR+co,x  < 0) ,  (2.3a, b )  

R is the spherical radius, and x and r are cylindrical polar co-ordinates. 
The solution of (2.2) and (2.3) for a prolate spheroid may be obtained by 

introducing the spheroidal co-ordinates 6 and 7 according to (such that g = 8 

on S )  

and expanding $ in a set of functions &(&, 7) that individually are O( i/kE) in 
the upstream limit and are wavelike in the downstream limit [see (4.1) below]. 
The end result is (cf. Miles 1972, where the corresponding solution for a circular 
disk is developed) 

(2.5a) 

x = gq, r = ( y + 1 ) + ( 1  +)t (5 > 8,  -1 < 7 < 1) (2.4) 

m 

n=l 
$ = +y-$(e2-1)' c AnQn(E,q) 

m 

n= 1 
= 8 C [Bn{(P - I)* - (e2 - I)* R$ ( E ) ]  + (.e2 - I)* 

xAn{R?([)--@) (Q}Isn(7), (2-5b) 

where 

and Xln are spheroidal wave functions in the notation of Flammer (1957), 
Pf,, is an associated Legendre function, = 0 for evenlodd r if n is odd/even, 
the An are determined by the boundary condition (2.3a) through an infinite 
set of simultaneous equations (the +n are not orthogonal), and 

where Nln is Flammer's normalizing integral for Xln. 

an ellipsoid in potential flow, we introduce 
Turning to the meridional velocity and recalling that v(&/dz) is constant over 

(2.9) g(7) = q a s p x )  = qi  - 721-t  [ a $ / a ~ ~ = ~ ,  
where ds is an element of meridional arc on 8 and 6 is defined by (1 .I b) .  The end 
result implied by (2 .5 )  and (2.9) is 

m 

~ ( 7 )  = (1-y2)-' E Kfln(71, (2.10) 
n=l 
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= 1.02 (6  = 0.197) 

1,0192 1.0508 1.0677 1.0448 1.1214 1.0599 1.1521 1.1005 1.1415 1.1667 
0.0012 0.0013 0.0157 0.0170 0.0632 0.0634 0.1521 0.1420 0.2750 0.2469 
0.0129 0.0155 0.0464 0.0545 0.0896 0.1008 0.1354 0.1429 0.1834 0.1821 
- 0.0000 0.0002 0-0003 0.0019 0.0025 0.0092 0.0113 0.0294 0.0332 
- 0.0001 0.0008 0.0010 0.0035 0.0047 0.0100 0.0130 0.0214 0.0265 
- - - - - 0.0001 0.0003 0.0004 0.0015 0.0022 
- - - - - 0-0001 0-0003 0-0005 0.0011 0.0016 

- - - - 0~0001 - - - - - 

1 

8 = 1.1 (8 = 0.417) 

1 1.0191 1.0971 1.0552 1.0812 1.0033 1.2615 0.7270 1.6569 0.1959 2.3081 
2 0.0070 0.0096 0.0806 0-0957 0-2844 0.2927 0.5824 0.6313 0.7368 1-2247 
3 0.0129 0.0195 0.0469 0.0666 0.1010 0.1275 0.1991 0.2288 0.3523 0.4320 
4 -  0.0001 0.0013 0.0026 0.0122 0.0217 0,0591 0.0890 0.2020 0.2548 
5 -  00001 0.0008 0.0014 0.0037 0.0068 0.0129 0-0222 0.0431 0.0675 
6 -  - - - 0.0003 0.0008 0.0025 0.0061 0.0137 0.0303 
7 -  - - - 0.0001 0.0001 0.0004 0.0009 0.0019 0.0045 
8 -  - - - - - 0.0001 0.0002 0.0006 0.0019 
9 -  - - - - - - - 0~0001 0.0002 

- - - - 0-0001 .o - - - - - 

TABLE 1. Representative A, and V,. Blank entries imply numbers smaller t.han 

where V,  is a linear combination of An and 23,. The stagnation-point limit is 
given by 

(2.11) 
n=l  

where cp is given by F (3.2.8). Upstream separation occurs if us < 0. The limiting 
result for potential flow is 

2po = &-'[e-i(2- I)log{j.e+ I)/(&- 1)}]-1 (k = 0). (2.12) 

Numerical calculations were carried out for lc = l (1 )  10 and 6 = 1.001, 1.01, 
1.02(0.02)1-10 using the tabulated @ for n = 1(1)10 and r = 0(1)21 from 
Stuckey & Layton (1964) and the prolate radial functions for n = I(  1 ) l O  from 
Hanish et al. (1970). Representative A, and V,  are tabulated in table 1. Repre- 
sentative ~ ( q )  are plotted in figure 2. The stagnation-point parameter 2ps /2po ,  

which is plotted in figure 3, appears to depend primarily on the single parameter 
K ,  and to be almost independent of 6 for fixed K, in the range 0 < 6 6 1. (This 
last conclusion is supported by all of the numerical calculations, only a small 
part of which is plotted in figures 2-4.) 

3. Upstream flow 

to the fluid at  rest is given by 
The axial perturbation velocity in the direction of motion of the body relative 
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lr f. =O 

+21-4 

FIGURE 1. Prolate ellipsoid (meridional section) for B = 1.02 (8 = 0.197). 

The expansion obtained by substituting (2.5) into (3.1) converges well in the 
neighbourhood of the nose, where it exhibits the limiting behaviour 

u0+1-222Pse(B2-1 ) -1 (~ -~ )  ( ( $ 8 ) .  (3.2) 

It converges only slowly for ( 
native representation I (2.21 b) :  

e,  however, and we therefore invoke the alter- 

m 

uo( - x) = ( - l ) n - l d n  1xI-n [ I  +n(n + 1 )  (kx)-2] (3.3a) 

dl 1x1-1 (3 J. -001, (3.3b) 
n=l 

where 

are the upstream-in$uence parameters and the dipole density of the body (f = 0 
in 1 6 1x1 < 8). 

The parameters dl and at2 are plotted in figure 4. Like eps/uo (cf. figure 3 ) ,  
they appear to depend primarily on the single parameter K ,  and to  be almost 
independent of 6 for fixed K ,  in the range 0 < 6 6 1. 

4. Lee-wave field 
The lee-wave components of in (2.5a) are given by 

q5n N 2 { R ~ ~ ( ( k , ~ ) k ~ } - l s i n { I c f [ - ~ ( n + 1 ) n } S n ( ~ )  ( k g f  00, 0 < 7 6 1).  (4.1) 

The corresponding wave drag on the ellipsoid, as obtained from a momentum 
balance over a large sphere of radius R f m ,  is given by [cf. I (2.25a) after 
setting $ = +r2 - r$,  R N 5 and cos 0 N 71 

c, = {$pU2nP(e2- 1))-1B ( 4 . 2 ~ )  

m m  

= 2 2 X A,A,[R~~(k,e)R~~((IC,s)]- lcos(g(m-,)n)  S,,r9n!rp-ly, (4.2b) 
m=l  n=l 

where D is the drag and C, is the drag coefficient. 

that of 
with k for K > K, + 2 but that Long's hypothesis fails in this regime. 

The parametric dependence of C, on k and S appears to be Iess simple than 
and SQ,; see table 2. We observe that C,lk262 begins to increase rapidly 
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7 

FIUURE 2. The normalized velocity distributions calculated from (2.10) 
for S = 0.417 and k = 1(1)5. 

5.  The limit k f co, 8 J. 0 

The limit 84 0 with K = O( 1) is considered in I Q 6. The results given there do 
not provide a uniformly valid approximation to v in the neighbourhoods of 
7 = T I ;  however, the desired result, obtained by relating f ( 7 )  to ~ ( 7 )  [see 
Miles (1970, $4) regarding this relation], is 

zp, N 1 -&K2exp{-w*( - l)} {coshw,(q)-~sinhw,(q)}(l/L2(q)}dq (k f CO), 

(5.1) 
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FIGURE 3. The stagnation-point parameter, calculated from (2.11) for 8 = 0.197 (crosses) 
and 0.417 (circles), from (5.1) for 8 4  0 (solid curve) and by Miles (1971) for a sphere, 
6 = 1 (broken curve); W,,, the potential-flow limit, is given by (2.12). The corresponding 
curve for a disk (Miles 1972), for which 6 = 00, lies between those for 8 = 0 and 13 = 1 
for 0 < K < 1.2 and then drops to 2p,/zPo = 0 at K = 1.9. 

where 

Wrl) = * V { G ( P )  + y;(P))*, P = 4 1  - r2P. (5.3a, b )  

Numerical values of zoJ (note that v,, = 1 for S = 0 )  and .pZ,, determined from 
(5.1) and I (7.10) through numerical integration, are plotted in figures 3 and 4 
[the results for .42, do not differ significantly from those determined from the 
approximation I (7.14)]. Closed streamlines appear in the downstream flow for 
K > K~ = 1.94 [see I (7.1 l)], but it seems unlikely that they significantly influence 
the upstream flow for K c K* = 2.30 (see penultimate paragraph in Q 1) .  

This work was partially supported by the Atmospheric Sciences Section, 
National Science Foundation, NSF Grant DES74-23791, and by the Office of 
Naval Research under Contract N00014-69-A-0200-6005. 
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k8 

FIGURE 4. The upstream-influence parameters defined by (3.3), calculated from (2.5) and 
(3.4) for S = 0.197 (crosses) and 0.417 (circles), from I(7.10) for S $ 0 (solid curve) and by 
Miles (1971) for a sphere, S = 1 (broken curve). The (dotdash) curve for d2 is an inter- 
polation of the results for 0 < 8 < 0.417. 

c 
1 
1.001 
1.02 
1-04 
1.06 
1.08 
1.1 

s 
O +  
0-045 
0.197 
0.275 
0.338 
0.378 
0.417 

7- 

k = l  
0.208 
0.210 
0.226 
0.239 
0.250 
0.260 
0.268 

k = 2  
0.688 
0.683 
0.639 
0.616 
0.603 
0.596 
0.594 

k = 3  
1.160 
1-125 
0.901 
0.822 
0.793 
0.790 
0-808 

- 

k = 4  
1.462 
1-382 
0.981 
0.908 
0.928 
1.004 
1.128 

-7 

k = 5  
1.627 
1.486 
0.989 
1.011 
1.169 
1.449 
1.875 

TABLE 2. The modified drag coefficient CD/K~ as calculated from (4.2). The entry for k = 5 
and o = 1.08 (1.1) corresponds to  K = 2.04 (2*29), which approximates (slightly exceeds) 
K,. C0//c2 increases rapidly with K above K,  (see text). The entries for 13 = O +  are calcu- 
lated from I (7 .6) .  
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